
Fostering Strategic Knowledge and Program Comprehension
Skills in Students Struggling with CS1

Violetta Lonati
lonati@di.unimi.it

Università degli Studi di Milano
Lab. CINI “Informatica e Scuola”, Italy

Anna Morpurgo
morpurgo@di.unimi.it

Università degli Studi di Milano
Lab. CINI “Informatica e Scuola”, Italy

ABSTRACT
In order to support students struggling with learning to program,
we designed new learning material, around two basic principles
from recent research on introductory programming education: pro-
pose program comprehension tasks [4] besides writing tasks, and
teaching strategic programming knowledge explicitly [5].

Such material may be of interest for high school teachers and
academics teaching programming to novices. It was prepared and
used in the context of a peer tutoring initiative targeted at under-
graduate students of our CS degree program. We look for feedback
and possible collaborators from other institutions, in order to carry
out a methodologically sound investigation to measure the quality
and effectiveness of the instructional material.

CCS CONCEPTS
• Social and professional topics→ CS1; CS1.

KEYWORDS
CS1; program comprehension; strategic knowledge; goals and plans

1 MOTIVATION AND RELATEDWORK
A significant feature that differentiates expert and novice pro-
grammers is their strategic knowledge [5], i.e., knowing stereo-
typical solutions to typical problems (so-called plans in Soloway’s
approach [6]) and being able to apply, tailor, and combine them
to solve new problems. Many authors suggest explicitly teaching
strategic knowledge [2, 6], since for many students this represents
a real challenge.

Program comprehension, i.e., the process of building a “mental
model of a program” [4], is also an important skill to acquire in
order to learn to program [1]. However, programming courses often
neglect it, mostly focusing on code writing.

2 THE MATERIAL
The material we designed focuses on these topics: issues concerning
input and plans for handling them; concepts and terminology re-
lated to goals and plans [6], in particular basic algorithmic iteration
plans, as those listed in [2, 3]; the different ways in which plans
can be composed to achieve aggregate goals.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8062-1/21/03.
https://doi.org/10.1145/3408877.3439632

For each topic, a brief and schematic written presentation is
followed by a sequence of decreasingly scaffolded exercises: stu-
dents are assigned program comprehension tasks that help them
identify and recognize plans and/or their composition in code snip-
pets, while associating them with the corresponding goals; they are
guided in completing, fixing or writing given plans; they are guided
in analyzing program requirements in order to identify the goals
and to design the appropriate plan/composition of plans; finally
they are required to write programs from scratch, starting from
requirements specifications written in natural language.

The material is available at https://aladdin.unimi.it/procosk.

3 VALIDATION
The general reception of the material was positive; students showed
to have become aware of the importance of all the different pro-
gramming skills, including the ability to reason about code, and they
claimed that they did improve (see mean values in the table below).
The goal/plan approach was very diversely received: “reflecting on
programming abstractions” and “activities on recognizing patterns”
were mentioned among the positive aspects; whereas someone
critiqued the “focus on formalities (as recognizing patterns)”.

Self-evaluate your skills (from 1 = none, to 4 = total) Before After ∆

Trace a piece of code on a given input 1.94 2.88 0.94
Detect errors in a piece of code 2.06 3.00 0.94
Apply to a new problem solution already seen 1.94 3.00 1.06
Recognize problems that are similar 2.00 2.97 0.97
Write programs starting from requirements spec. 1.91 2.81 0.91

Wewill assess the effectiveness of the material and the feasibility
of its use in classes. The study may include interventions based
on the material, and assessed with pre- and post- tests or with the
analysis of programs written by participants. Feedback on the study
design and possibile collaborators are welcome.

REFERENCES
[1] Tony Clear, J.L. Whalley, Phil Robbins, Anne Philpott, Anna Eckerdal, and M.

Laakso. 2011. Report on the final BRACElet workshop: Auckland University
of Technology, September 2010. Journal of Applied Computing and Information
Technology 15, 1 (2011), 10.

[2] Michael de Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and
Assessing Programming Strategies Explicitly. In Proceeding of ACE ’09. Australian
Computer Society, Inc., AUS, 45–54.

[3] David Ginat, EtiMenashe, andAmal Taya. 2013. Novice difficulties with interleaved
pattern composition. In Prooceedings of ISSEP ’13, Vol. 7780 LNCS. Springer, 57–67.

[4] C. Izu, C. Schulte, A. Aggarwal, Q. Cutts, R. Duran, M. Gutica, B. Heinemann, E.
Kraemer, V. Lonati, and C. Mirolo. 2019. Fostering Program Comprehension in
Novice Programmers - Learning Activities and Learning Trajectories. In ITiCSE-
WGR ’19. ACM, New York, NY, USA, 27–52.

[5] Tanya J. McGill and Simone E. Volet. 1997. A Conceptual Framework for Analyzing
Students’ Knowledge of Programming. Journal of Research on Computing in
Education 29, 3 (1997), 276–297.

[6] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Communication of the ACM 29, 9 (1986), 850–858.

https://doi.org/10.1145/3408877.3439632
https://aladdin.unimi.it/procosk

	Abstract
	1 Motivation and related work
	2 The material
	3 Validation
	References

