
1

Nothing to fear but fear itself: introducing recursion
in lower secondary schools

Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo
Dip. di Informatica – Università degli Studi di Milano – Milan, Italy

{lonati, malchiodi, monga, morpurgo}@di.unimi.it

Abstract—Recursion is a powerful conceptual tool, nevertheless
it is often considered too abstract and technical to be effectively
proposed in lower secondary school. Here we present our expe-
rience in introducing 8th graders to recursive strategies where
the active observation of recursive algorithms execution allowed
pupils to understand the main features of a recursive process, to
convince themselves that it works, and to unveil the mystery of
its effectiveness. In fact, by focusing on the self-similarity of the
input data and the possibility to delegate blindly the solution of
subproblems, pupils were able to recognize the heuristic potential
of recursion. We started with an unplugged activity using LEGO
bricks where a recursive algorithm was executed by pupils, and
we continued with an activity supported by a software tool we
developed ad-hoc. The undertaking was concluded by the abstract
consolidation of the basic concepts and properties which had
come out during the previous activities.

I. INTRODUCTION

Of all ideas I have introduced to children, recursion
stands out as the one idea that is particularly able to evoke
an excited response. [Seymour Papert, 1993]

Since 2008, we organize activities aimed at showing to
pupils the actual nature of informatics [1], [2], [3], [4], with
an emphasis on its scientific aspects, often ignored in non
vocational curricula in our country [5]. One of the major goals
is to orient pupils in their further studies, and our activities
are designed to convey the core of the discipline, focusing on
representing and processing digital pieces of information.

Given its iconic status in the field, recursion seemed a
wonderful theme for such activities. In fact, recursion is one
of the most recurrent memes in computer science: folklore is
full of jokes (even Google answers to a search of the term
‘recursion’ by asking “Did you mean: recursion”1) and ubiq-
uitous references to chicken-egg or ‘bootstrap’2 techniques.
But recursion is not just an alluring topic: if mastered it
also provides a powerful approach to problem solving. Thus,
one would expect recursion to be part of any introduction to
computational thinking, but this is not the case, since it is often
considered too “technical” or “advanced” to be presented to
pupils, with the partial exception of vocational ones.

In fact, while there is a vast literature on teaching recursion
(for an accurate recent survey refer to [6]), it usually focuses

1As it often happens, Donald Knuth is more precise, even in jokes: The Art
of Computer Programming, Volume I has these two index entries ‘Circular
definition, 260, see Definition, circular.’ and ‘Definition, circular, see Circular
definition.’

2A word coined after the English idiom ‘to pull oneself up by one’s own
boot-straps’.

on older students (at least attending upper secondary school,
but mainly at the bachelor level) and assumes a previous
exposure to a programming language. Even the few devoted to
middle schools have rather high prerequisites. For example, [7]
studied pupils aged from 10 to 14 who qualified by achieving
high scores in an IQ test; then they attended several courses in
Logo lasting from 25 to 150 hours (75 hours on average). [8]
focuses on recursion as a problem solving approach without
explicitly referring to a programming language: it addresses
students in Polish (upper) secondary schools, and the audience
is assumed to be rather sophisticated, since it has probably
already encountered (but possibly not mastered) recursion in
primary or middle schools, using Logo or Pascal.

Our context is certainly much less mature, but still, we think
recursion could be a proper topic. Indeed we believe recursion
could be one of the best showcases of our discipline, with its
mix of fascinating, powerful and challenging facets. Our first
goal, however, was to convince pupils that a recursive strategy
is nothing to fear of, that it works in many familiar cases and
that its computational power, while fascinating, is not magic.

It is worth noting that in our country teachers for the
selected age group are not trained in informatics and it is
possible they do not even know what a recursive solution is:
after all, this theme is not mentioned in the school curricula. So
we did not design our activities as an alternate methodology to
teach recursion to young pupils, but rather as a new proposal
to stimulate further interest in informatics. We remark that our
activities were not designed to learn recursive programming:
devising a solution to a computational problem and coding
it are separate concerns that require different skills and call
for a different training [4]. Here we focused on the abstract
problem-solving aspect of recursion, since we believe it is a
trick that might attract pupils to the actual scientific essence of
informatics, and being familiar with it could be both suitable
and useful for a general audience.

Due to their extracurricular nature, our activities cannot
exceed the time span of a workshop lasting a few hours.
Thus, it was clearly out of reach that at the end pupils
completely understand what recursion implies, or even how
to use it in a new context. Rather, the goal we set was
to give pupils a chance to familiarize with problem solving
by structural recursion, and to put them in contact with the
heuristic power of seeing a self-similarity in the structure of
a problem: in these cases even a ‘blind’ delegation (i.e., a
delegation unaware of the ultimate end of the computation)
may be used to describe the solution. Indeed, our preliminary



2

results support the hypothesis that basic recursive strategies are
within the Vygotskij’s proximal development zone [9] of 8th
graders without a specific programming training. Pupils built
up their own intuition that this strategy can indeed work in
several cases and they got to see this technique as an effective
approach for solving (generic) problems of different kinds just
by exploiting the self-similarities of input data.

The paper is organized as follows: Sect. II briefly reviews
the key aspects of recursion addressed by our activities;
Sects. III and IV illustrate the goals, the methodology, and the
workflow of the activities proposed in the workshop, while in
Sect. V we present the assessment design and its results; the
last Section is devoted to some concluding remarks.

II. RECURSIVE SOLUTIONS TO COMPUTATIONAL
PROBLEMS

The first abstract step in approaching recursion is the
notion of computational problem. A problem is specified by a
function that associates a desirable output to any possible input
data chosen from the problem domain. Computational problem
specifications emerge every time one is able to frame a real life
requirement as a data processing model. In several practical
cases (i.e., the class of computable problems), computational
problems admit algorithmic solutions. It is worth noting that
this notion of problem is somewhat different from the one
most pupils have in lower secondary schools: often what they
call a ‘problem’ (like “find the Greatest Common Divisor of
42 and 24”) is in fact what a computer scientist would have
probably framed as the ‘instance of a computational problem’
(like “find the GCD of two positive integer numbers”). Even in
the first examples of programming shown to children the case
of “family” of problems is often absent: the code implements
an algorithm composed by unambiguous steps, but it works
only for a specific input or a given problem environment (for
example a specific maze). This is however a crucial step in
grasping the idea of recursion, since its power relies on the
reduction of a problem to a simpler one with the same “shape”.

In fact, when input data naturally expose a self-similar
structure (i.e., their aggregate composition can be described in
terms of themselves: for example, a sequence can be an empty
one or made up by a first element added to another sequence)
it is often convenient to devise a recursive solution (structural
recursion), which builds the whole solution by combining the
sub-solutions obtained by applying itself to “smaller” versions
of the input data, or getting the result directly in the trivial
cases. This pattern is so common and natural that several
(functional) programming languages libraries factorize it in
a ‘fold’ operator. It is worth noting that the process is in fact
an exact analogue of mathematical induction and in general
it simplifies correctness proofs (or, one might say, the general
understanding about how it works). Less naturally but even
more powerfully, it is sometimes possible to devise a recursive
solution by generating new proper self-similar data ad-hoc for
the problem at hand (generative recursion). We will focus on
structural recursion, which is the most intuitive one and yet
quite tricky to grasp, possibly due to the negative aura that self-
references have in other fields, in particular in the context of

definitions: pupils learn early that definitions must not use the
definiendum in order to be acceptable in scientific discourses.
Thus recursion is potentially perceived as a weird exception
to an already well establish (and somewhat obvious!) rule.
Obviously enough, at least for those who have already under-
stood recursion or induction, the cornerstone to see recursion
unexceptional with respect to the “no definiendum in definiens”
rule is the base case, the case one is able to define trivially
(yet sometimes difficult to get by the inexperienced [10]).
Moreover, it is well known that those who misunderstood
recursion often have mental models related to “loops” [7],
[11]. The right model, instead, should be based on “copies”
of the solution: our activities were designed to convey exactly
this idea.

With the goal of presenting recursion as a heuristic means,
our activities emphasize two key concepts: (1) self-similarity:
recursion makes sense when data are composed by smaller
versions of themselves and eventually there is a smallest
version for which the solution is trivial; (2) blind delegation:
the solution of a smaller instance can be delegated blindly,
assuming that eventually the chain of delegations will dele-
gate the smallest instance, which admits the trivial solution.
Ingenuity is still needed to devise a proper way of combining
the output of delegations, but the feasibility of the procedure
should be now a direct consequence of the structure of the
problem data. It should also be evident that the second concept
is nothing more than a special case of a more general ‘divide
and conquer’ strategy to which pupils are generally already
somewhat acquainted: a difficult task can be sometimes made
simpler by dividing it among a team of fellows. The novelty,
however, is that now the sub-problems preserve the same
structure of the main one.

All in all, we aim at promoting a grasp of the inductive
nature of recursion, something [12] labels as the ‘expert-level’
abstraction of recursive thinking: however, we do not believe
this will necessarily stem from a bottom-up understanding of
how it works in programming languages.

III. LEARNING GOALS AND METHODOLOGY

Having in mind the school level of our target pupils (8th
graders), we assumed some prerequisites:

• be able to execute a simple procedure described in natural
language, even if recursive;

• be acquainted with ‘divide and conquer’ strategies, i.e.,
know the benefit of dividing a task into smaller tasks,
executing them separately and them putting together their
outcomes.

Being designed as extracurricular, the activities we are
describing needed to have a short duration: two/four hours.
Hence we do not expect pupils to develop strong specific
operational skills; on the contrary the learning goals we aimed
at are quite general or introductory:

• accept that the definition of an object may refer to the
object itself, provided that a (trivial) base case is defined
independently;

• understand that the self-similarity of the instances of a
problem can be exploited to design a recursive strategy
that solves it;



3

• be aware that a peculiar ‘divide and conquer’ strategy
(which is called recursion) can be used to solve a problem
when its subproblems share the same structure;

• be able to identify the fundamental features of a simple
recursive algorithm, given its description or the possibility
to observe its execution;

• be able to adapt a simple tail recursive algorithm to solve
a new problem with self-similar instances.

In order to achieve these goals, we identified two crucial
steps. First, one needs to understand that a family of similar
specific problems can be set and dealt with as a single general
problem, by searching for a general method that applies to
each specific problem and allows to solve them all in the same
way. This is characteristic of any computational approach, but
it is especially relevant when recursion is considered, since
each subproblem has to belong to the same family that contains
also the initial problem to be addressed. However, such point
of view is not at all usual at this age, hence the activities we
proposed are designed also to increase pupils’ awareness about
it.

A more specific crucial step is understanding what happens
during the execution of a recursive algorithm, in both getting
aware of what happens at each single step of this process,
and meanwhile grasping, at a higher level, how such steps are
inter-related. Most activities we proposed focused exactly on
this issue and in particular we decided to use computers to
provide an environment that could foster this understanding.
We thus developed an ad-hoc software tool that enabled pupils
to make experiments about an already implemented recursive
algorithm, in order to analyze and understand its behavior and
features. Since we were interested in the features of recursion,
rather than the implementation of recursive algorithms, the role
we assigned to computers as in the approach already proposed
for instance in our Greedy money learning unit [3] on greedy
algorithms, was completely different from the one that can be
seen in our Mazes learning unit [4] and, more in general, in
proposals like Code.org [13], where the focus is on coding a
program and running it in order to test whether it is able to
provide a solution to a given problem instance.

Common choices to introduce recursion are the Towers of
Hanoi or fractal drawings. Considering the school level of
our target pupils, we instead chose a simpler leading theme,
namely manipulation of sequences of characters (strings).
While very simple, strings are still interesting objects since
they have a structure characterized by different forms of self-
similarity: for instance a string can be pictured as the concate-
nation of a character and another string or, more generally,
of two strings whose summed lengths equal the length of
the original string. Also, several computational problems of
various complexities can be proposed: e.g., computing the
length, reverting the letters, or sorting them.

From a methodological point of view, the activities were
designed to foster the individual responsibility of pupils in
their learning process. Hence, following the guidelines of
experiential learning theory [14] and problem based learn-
ing [15], traditional explanations were avoided and replaced by
group activities in an allosteric environment [16]. According
to this approach, the teacher plays the role of a facilitator

Fig. 1. Pseudo code for the recursive function executed using LEGO bricks.

When the mate on your right asks to establish how long a word is,
follow these instructions:
if the word has one letter only

whisper 1 to your mate.
else

take off a letter from the word and put it in the trash;
pass the rest of the word to the mate on your left;
ask him/her to establish how long it is;
wait for his/her answer;
add 1 to his/her answer;
whisper the result to the mate who had asked you.

Fig. 2. LEGO towers representing words

of the learning process, in that he/she has to provoke pupils
with questions and stimuli, instead of instructing them directly.
In particular, our ‘‘algomotricity’’ approach [17] aims at
letting students build their mental models of the topic under
investigation with “unplugged” and motoric activities (i.e.,
LEGO bricks to represent letters of strings, see Sect. IV-A),
followed by a computer-based activity.

According to this methodological approach, the choice of
the setting for the activities is critical in that it may determine
how engaging the activities are for pupils. For the simulation of
the execution of a recursive algorithm we took inspiration from
the The little people metaphor [18], but we decided to change
the figure of “specialist” with that of “fairy”. This choice was
aimed against the stereotype that problems in informatics are
mainly solved by male characters [19], and was motivated also
by the fact that fairy characters are more suitable to play on
the fascination, the magic aura, of recursion.

IV. DESCRIPTION OF THE ACTIVITIES

The workshop was structured in four steps, it involved
eighteen pupils of one 8th grade class, took place in the pupils’
school and lasted three hours (two hours for the first two steps,
and one hour the next day for the last two steps).

A. Computing the length of a word with LEGO bricks

Pupils were split into groups of five/six and each group
sat in a row of seats. Each pupil received a note with the
instructions he/she should carry out.

To start the activity, the rightmost pupil in each group was
given a LEGO tower representing a word (each brick was
labeled with a letter, see Figure 2) was asked how long the
word was, and was told to apply the instructions written on the



4

note in order to answer. The note the pupils received had the
description, written in natural language, of a recursive function
computing the length of the word passed as argument, as in
Figure 1.

We did not announce the final result the group was going to
compute (the word length), otherwise pupils could be tempted
to carry out the task in more natural and standard ways, and
stressed that the instructions were to be executed literally, even
though the process could appear mysterious at first.

A LEGO tower is a natural choice to give pupils a tangible
example of a self-similar entity; it is easy to see the parts and
also to assess the self-similarity of their composability: one
can attach a single brick or a tower of bricks in the same way.

The problem considered (compute the length of a word)
was very simple, but the algorithm was based on a novel (and
initially strange) approach for the pupils with respect to their
previous knowledge.

When every group had completed the task, other executions
were performed, changing the positions of pupils within the
group and the word to be examined, and using words with
different lengths.

Pupils did not know in advance that they had all received the
same instructions (notes were written with different styles) so
that they were induced to pay attention to what was happening
in the process; nevertheless, as we expected, they already
noticed that the instructions were identical at the second
repetition.

By changing words and positions, they were able to: observe
the process from different perspectives, which in particular
held for the leftmost and rightmost pupils, observe as many
details as possible, focus on what they were doing both
individually and collectively, observe the process on different
instances of the same problem.

After a sufficient number of experiments, the facilitator led
a debriefing discussion with the whole class on what had gone
on.

B. Analysis of a recursive algorithm with a software tool

In the second step pupils were asked to analyze how a
recursive algorithm works, with the help of a software tool
developed for the purpose3.

Pupils worked in pairs on the computers. The software
tool allowed them to run the procedure (an animation of a
recursive computation on a string) and to pause the execution,
in order to observe characteristic aspects of the process—
increasingly specific as they proceeded in the software ‘levels’,
see below—and thus to capture the key features and follow
how the algorithm worked. The “little people metaphor” and
its visualization is ideal to suggest the “copies” mental model
common in expert users of recursion [21], [7].

Although the algorithm was already implemented, the as-
signment here did not consist in a pure execution as in the
first step, but it required a work of analysis and abstraction:
using the revised Bloom’s taxonomy [22], the former task is
within the cognitive category of “understanding” while the

3The software tool is a web application based on the Raphaël JavaScript
library [20]. It is available here: http://aladdin.unimi.it/sw/fatine/ (in Italian).

Fig. 3. JavaScript code for the recursive function used by the tool.

function reverse(a string) {
if (a string.length == 1) return a string;
else {
var first letter = a string.charAt(0);
var rem string = a string.slice(1);
var reversed rem string = reverse(rem string);
var reversed string = reversed rem string + first letter;
return reversed string;
}}

latter is within the category of “analysis”. Hence, to make the
assignment feasible, we chose an algorithm similar in structure
to the one of the previous step. Such algorithm is defined by
a recursive function returning the reverse of the input string
(see Figure 3).

The activity was guided by a worksheet which, by means
of several questions, accompanied the pupils in the discovery
of the key components/features of the algorithm. The ques-
tions were intended to lead the pupils gradually through the
disclosure of the process, allow them to observe concrete
examples of how the algorithm worked, guide them in the
design of their experiments, make them think on what they
had observed so that their doubts could come up and they
felt encouraged to make new experiments, while letting them
make generalizations based on their observations.

The software tool lets pupils choose the string for the input
and start its processing. After the execution, the interface
shows the string obtained as output. The tool in particular
displays a “computer” with a monitor which shows some
objects moving on it, whose role is to represent the underlying
process in some concrete way:

• a sequence of circles represents the recursion stack4, each
circle corresponding to a call of the recursive function,
and there are as many circles as there are characters in
the input string;

• the substring passed as argument of a call is represented
by a yellow tower under the circle corresponding to the
call and its height is proportional to the substring’s length;

• in the first phase of the process, when calls are made, the
tower moves from left to right and it shrinks, whereas in
the second phase of the process, when values are returned
and composed into the solution, the tower moves back to
left and it grows;

• to keep track of the recursion phases, the sand in an
hourglass changes its color: it is yellow in the first phase
(stack of calls), orange in the second phase (returns), and
red for the base case (when the argument has length 1);

• the body of the recursive function is executed by a fairy
who can be seen perfoming the following actions: detach
a piece from the top of the tower, pass on the tower,
receive the tower, attach a piece at the bottom of the
tower, wait, sleep.

4Although a horizontal representation of the stack might seem less natural
for a computer scientist, it is more convenient to draw and, moreover, it is
visually linked to the previous activity with LEGO bricks, where pupils sat
in a row.

http://aladdin.unimi.it/sw/fatine/


5

The software is organized in ‘levels’ as is common practice
in video games. This allows the pupils to observe the execution
of the algorithm from view points of increasing depth.

In the first level the goal is to understand the task accom-
plished by the algorithm, i.e., reverting the input string, and
only the relation between input and output is shown. Hence, in
the first level, the computer is a “black box” simply receiving
the string as input and returning its reversed form.

In the next levels it is possible to conduct experiments
through clicking on a button (EXPLORE), with the effect
of pausing the execution. In order to promote abstraction
and generalization by pupils, it is not allowed to pause and
observe the behaviour of consecutive function calls. When an
experiment ends, it is possible to restart the process and try
additional experiments.

The second level shows the process from a global point of
view, highlighting the concept of delegation, via the calls of
the recursive function, and the role of arguments and return
values of these calls (see Figure 4). Clicking on EXPLORE
shows two pieces of information related to the current process
state: the fraction of string contained in the tower and the
number of letters detached from the input string, which equals
the recursion stack size.

The third level shows the operations that are executed during
any single call of the recursive function, and makes evident
that they are the same for each call, base case excluded (see
Figure 5). When one clicks on EXPLORE, the small circles
become active elements: clicking on one of them has the effect
of starting an animation showing the behaviour of the fairy
corresponding to that circle, as well as that of the two fairies
corresponding to the adjacent circles. All actions performed
by such fairies will depend on their position w.r.t. the tower,
and on the direction of the tower itself. For instance, if the
tower is moving leftwards (Figure 5(b), the fairy sticks the
letter she is holding at the basis of the tower, then passes the
tower to the fairy on its left.

C. Comparison of previous algorithms

In the third step the two algorithms (string length and
reverse) were compared by reviewing their key features and
highlighting their commonalities, in a discussion involving the
whole class. To start the discussion, the worksheets that guided
the second step were reviewed and the answers read aloud and
commented by pupils.

D. Guided design of a recursive algorithm which computes
powers

In the fourth step the facilitator guided the pupils to design a
recursive algorithm that computes 218, where 18 is the number
of pupils in the classroom5. The context was rather different
from the previous ones, since integer powers, apparently, have
nothing in common with strings.

5We aimed at the natural, ‘tail recursive’, algorithm. In [8] there is a nice
example which exploits recursion to achieve a faster exponentiation, but it
requires an acquaintance with the properties of integer powers which the
pupils did not have.

This step aimed at further consolidating the concepts previ-
ously encountered. The consolidation was fostered by facing
a different context from the first two steps and a new task:
the design of a recursive algorithm. We point out that the
gap between the tasks faced so far and this new one would
be too large for the pupils to be able to reach the goal
autonomously. In fact, designing an algorithm is much more
difficult than analyzing an already implemented one [22].
Furthermore the object of the faced activity—integer powers—
was more abstract. Thence this design activity was carried out
under the facilitator’s guidance.

V. ASSESSMENT AND EVALUATION

Assessing the effectiveness of this workshop is not easy.
First of all, it lasted only a few hours and was alien from
curricular activities, both in the content and in the methodol-
ogy. Moreover, we did not aim at the development of specific
operational skills or competences but had established general
or introductory goals. Finally, there are no benchmarks on this
topic for this age group.

Hence we decided not to administer profit tests, but rather to
found our evaluation on the information gathered by observing
the reactions and contributions of pupils during the activities,
and by reading their answers to the questions in the worksheets
and the reports of the activities they were asked to write
a couple of days after the workshop. Such data (since the
pupils worked in pairs we collected nine worksheets) are
reported in the following: as a whole, they show an acceptable
understanding of the concepts, and indicate that at the end
of the workshop the participants were convinced that the
recursive approach may indeed work.

We also collected the qualitative perception of a teacher who
knew the pupils (she teaches them mathematics and science),
but was not directly involved in the activities: “First of all,
I noted that pupils were happy to participate in the activities. The
activities did engage pupils and gave them an opportunity to look
at things from the different point of view of a singular technique
which was for sure new to them. I considered particularly effective the
combination of an initial kynesthetic step with another one providing
the use of computers in order to tackle the problem-solving theme.”

A. Reactions and contributions by pupils during the activities

During the discussion that followed the experiments with the
LEGO bricks procedure, pupils showed they have understood
what had happened during the process and, with the help of
suitable questions and stimuli, they were able to notice some
key points of recursion as a technique to count the letter of a
word. In particular they noticed that: the written instructions
were the same for each pupil, even though each of them exe-
cuted slightly different operations; the task was accomplished
by composing the contribution of different actors; each pupil
solved a part of the problem and then relied on another mate to
complete the task, until a very simple case was reached; such
simple case is especially relevant because it is the only one
which is resolved completely without involving other mates.

After the experiments with the software, the worksheets
were reviewed and the answers discussed with pupils; most



6

Fig. 4. Level 2 shows the process as a blind delegation.

Fig. 5. Level 3 shows the operations executed during any single call of the recursive function: they are the same for each call, base case excluded.

(a) First phase: going from left to right of the screen.

(b) Second phase: going from right to left of the screen.

written answers were correct and the exchange of views among
pupils allowed all minor errors or gaps to emerge and to be
clarified by the contribution of pupils selves.

During the discussion focusing on the comparison between
the two algorithms (string length and reverse), all the basic
features of structural recursion emerged, since pupils pointed
out (clearly with non-specialistic terminology) that:

• both algorithms operate on a brick tower (input string)
and pass it around;

• a sequence of actors (the pupils in one case, the fairies
in the other case) cooperate; for each letter of the string
there is an actor (each actor executes a recursive function
call);

• each actor (except the last one) performs the same
sequence of actions on the tower (executes the same
instructions);

• each actor (except for the last one) asks another actor
to solve the problem on a smaller portion of the tower
(delegation, recursive call on a smaller argument) and
waits for the answer in order to complete his/her work
(return value);

• all actors do some operations on a tower which could
have different sizes (autosimilarity);

• the instructions executed by pupils and fairies are rel-
atively simple, but the cooperation between the actors
lets them solve a more complex problem (divide and
conquer);

• if an appropriate number of cooperating actors is avail-
able, the algorithm works for any string (it is valid for
each instance of the problem);

• the last pupil and the last fairy of the sequence receive
a tower made up of only one brick and they don’t work
on it, but just reverse the “direction” of the process (base
case of the recursion);

In particular, pupils inferred and said that the instructions in
the two activities (the ones on the notes handed out in the
first activity and the ones executed by the fairies but not
visible in the second activity) had to be similar. They also
asked us to see the real instructions given to the fairies in the
computer, a question which we had not expected. We showed
the actual underlying JavaScript code; this request gave us
also the opportunity to introduce self-reference (a recursive



7

Fig. 6. Pseudo code for the recursive function executed using LEGO bricks.

When a mate on your right asks the power with exponent e,
follow these instructions:
if e is 1

whisper 2 to your mate.
else

decrease e by 1;
ask to the mate on your left to compute the power
with the decreased exponent;

wait for his/her answer;
multiply his/her answer by 2;
whisper the result to the mate who had asked you.

function calls itself until it ends up in the base case), a relevant
aspect when implementing a recursive algorithm which was
not one of our goals and hence had not been highlighted yet.

In the final step of the activity, after briefly reasoning with
the pupils on the computation of powers, the class was able
to collectively design a recursive algorithm similar to the ones
seen before based on the property 2n = 2× 2n−1, see Fig. 6.

The pupils then executed the algorithm with a kynesthetic
modality, each pupil executing a function call, and observed
the general process. During the execution, the role of self-
similarity and delegation appeared to be well recognized by
everyone, since each pupil needed to engage personally. Pupils
were impressed in particular by the fact that the first pupils
called upon in the process were actually the ones that had to
calculate the last steps of the multiplication, so they had to
face the biggest calculation, which highlights the singularity
of the recursive approach. Some even noted that the concept
of integer powers, that they had found difficult, was now more
clear under this new viewpoint.

After the cooperative design and execution of the procedure,
pupils were asked to write such a procedure down, which
required them to rework on and put into words what they
had understood so far. To do so they were allowed to refer
to the written instructions they had received in the first
activity. Indeed we ascertained that all their written procedure
presented a clear recursive structure adapted to the new goal.

B. Analysis of worksheet answers and reports

The worksheet was composed by nine open questions
concerning the algorithm which was showed in execution
and animated by the tool described in Sect. IV-B. The nine
questions asked to identify and interpret certain components of
the animation (e.g., “what does the blue number represent?”),
to infer properties related to specific moments of the execution
(e.g., “how does the tower change when the hourglass is
yellow?”) or to predict the behavior of the algorithm in a
given precise situation (e.g., “look at his picture: which letters
are written in the tower, soon after the action of the fairy?”).
Such behavior and properties, however, could not be tested
directly on the software (namely, the questions referred to
inputs having length lower than those accepted by the tool),
hence they required to autonomously conceive meaningful
experiments in order to generalize the observed behavior and
characteristics.

The answers to those questions that asked for a precise
prediction proved to be almost always correct; on the contrary,
the answers to those questions that asked to verbally describe
some features of the algorithm were still basically correct but
in some cases they appeared vague or incomplete. For instance
some groups wrote that the tower shrinks/grows, some others
wrote that it moves rightward/leftward, and only two described
both these aspects. In particular, when asked to list the actions
performed by fairies they all mentioned verbs like ‘take’,
‘detach’, or ‘remove’ letters, and sometimes ‘attach’ them;
only few reported also ‘sleep’ and ‘wait’ and no one mentioned
‘pass’ and ‘receive’ the tower. We ascribe these lacks to
the young age of pupils, who are not yet able to accurately
describe complex phenomena, rather than interpreting them as
an actual incomprehension. Indeed, when told of these faults
during the subsequent discussion, pupils had no difficulties in
understanding and admitting the missing parts.

Concerning reports, we could only perform a qualitative
analysis of their content. In fact, their level of detail and
precision varies greatly, although in roughly half of them
some commonalities arise: specifically, recursion is described
as an approach to the solution of different kinds of problems
and, to a lesser extent, it is highlighted that it allows to
distribute work among executors with the aim of minimizing
their effort; moreover, delegation and problem decomposition
are mentioned often. It is interesting also to note that some
reports assert that at the beginning recursion appears uselessly
intricate but then it does work.

VI. CONCLUSIONS AND FURTHER DEVELOPMENT

Even though in our knowledge there are very few propos-
als dealing with recursion for our reference age group, we
strongly believe in the long-term educational value of such a
theme. Also, providing concrete examples of such a fascinating
facet of the informatics discipline since the early education
stages has a twofold benefit: on the one hand pupils will be
empowered in their computational thinking skills, on the other
hand our discipline can eventually shine for its more scientific,
exciting, and engaging aspects.

Preliminary results show that, relying on self-similarity
and delegation, recursive strategies may indeed be within the
proximal development zone of pupils. Thus, the activities we
designed were successful at least in demystifying the belief
that recursion is too an exoteric topic for lower secondary
schools pupils.

The proposal could be expanded, for instance to include a
classic topic like the binary search. A nice input could be given
by the Bebras [23] task depicted in Figure 7. Such task proved
to be very hard for pupils of this age but we believe that it
could be worked out in our context, provided the fact is pointed
out that visitors need not be interviewed in the order they
entered the room. Hence, using the inquiry-based approach as
above, pupils could be asked to work in groups of two or three
to design an efficient recursive strategy to find the thief.

This kind of activities could be structured to compose a
learning unit, useful to promote also more operational abilities
like:



8

Fig. 7. A nice starting point to address the binary search.

• identify the self-similar structure of a problem even when
not evident nor suggested;

• recognize those structures that can be suitably exploited
to build recursive solutions;

• establish if a recursive definition is well posed (for
instance w.r.t. the base case);

• distinguish among a recursive and an iterative strategy;
• given a problem whose instances have an evident or sug-

gested self-similar structure, be able to write an algorithm
solving it recursively;

• design a recursive algorithm for a problem whose struc-
tural self-similarity is not highlighted beforehand.

To assess the effectiveness of such a learning unit, one
should measure the achievements of pupils w.r.t. knowledge
and skills, and an interesting point of view would be relating
them to typical misconceptions that occur when recursion is
concerned [7].

ACKNOWLEDGMENT

The authors would like to thank Manuel Previtali, the school
‘Istituto Comprensivo Ilaria Alpi’, and the teacher Martina
Palazzolo for their collaboration.

REFERENCES

[1] Violetta Lonati and Mattia Monga and Anna Morpurgo and Mauro
Torelli, “What’s the fun in informatics? Working to capture children
and teachers into the pleasure of computing,” in Informatics in schools:
situation, evolution and perspectives (ISSEP 2011), ser. Lecture Notes
in Computer Science, Kalaš, I. and Mittermeir, R.T., Ed., vol. 7013.
Springer-Verlag, 2011, pp. 213–224.

[2] C. Bellettini, V. Lonati, D. Malchiodi, M. Monga, A. Morpurgo, and
M. Torelli, “Exploring the processing of formatted texts by a kynesthetic
approach,” in Proceedings of the 7th workshop in primary and secondary
computing education, ser. WiPSCE’12. New York, NY, USA: ACM,
2012, pp. 143–144.

[3] C. Bellettini, V. Lonati, D. Malchiodi, M. Monga, A. Morpurgo,
M. Torelli, and L. Zecca, “Extracurricular activities for improving
the perception of informatics in secondary schools,” in Informatics
in schools. teaching and learning perspectives, ser. Lecture Notes
in Computer Science, Y. Gülbahar and E. Karataş, Eds., vol. 8730.
Springer International Publishing, 2014, pp. 161–172.

[4] Violetta Lonati and Dario Malchiodi and Mattia Monga and Anna
Morpurgo, “Is coding the way to go?” in ISSEP 2015, ser. Lecture
Notes in Computer Science, Andrej Brodnik and Jan Vahrenhold, Ed.,
vol. 9378. Switzerland: Springer, 2015, pp. 165--174.

[5] Carlo Bellettini and Violetta Lonati and Dario Malchiodi and Mattia
Monga and Anna Morpurgo and Mauro Torelli and Luisa Zecca,
“Informatics education in Italian secondary school,” ACM Transactions
on Computing Education, vol. 14, no. 2, pp. 15:1–15:6, 2014.

[6] C. Rinderknecht, “A survey on teaching and learning recursive
programming,” Informatics in Education, vol. 13, no. 1, pp. 87–119,
2014. [Online]. Available: http://www.mii.lt/informatics in education/
htm/INFE235.htm

[7] D. Dicheva and J. Close, “Mental models of recursion,” Journal of Ed-
ucational Computing Research, vol. 14, no. 1, pp. 1–23, 1996. [Online].
Available: http://dx.doi.org/10.2190/AGG9-A5UD-DEK0-80EN

[8] M. M. Sysło and A. B. Kwiatkowska, “Introducing students to recursion:
A multi-facet and multi-tool approach,” in ISSEP 2014, Y. Gülbahar and
E. Karataş, Eds. Springer, 2014, pp. 124–137.

[9] L. Vygotsky, Mind in Society: Development of Higher Psychological
Processes. Cambridge: Harvard University Press, 1978.

[10] B. Haberman and H. Averbuch, “The case of base cases: Why are
they so difficult to recognize? student difficulties with recursion,” in
Proc. of ITiCSE 2002. New York, NY, USA: ACM, 2002, pp. 84–88.
[Online]. Available: http://doi.acm.org/10.1145/544414.544441

[11] C. Mirolo, “Is iteration really easier to learn than recursion for
CS1 students?” in Proceedings of the Ninth Annual International
Conference on International Computing Education Research, ser. ICER
’12. New York, NY, USA: ACM, 2012, pp. 99–104. [Online].
Available: http://doi.acm.org/10.1145/2361276.2361296

[12] S. M. Haynes, “Explaining recursion to the unsophisticated,” SIGCSE
Bull., vol. 27, no. 3, pp. 3–6, Sep. 1995. [Online]. Available:
http://doi.acm.org/10.1145/209849.209850

[13] Code.org, “Code.org,” https://code.org.
[14] D. A. Kolb, R. E. Boyatzis, and C. et al.. Mainemelis, “Experiential

learning theory: Previous research and new directions,” Perspectives on
thinking, learning, and cognitive styles, vol. 1, pp. 227–247, 2001.

[15] C. E. Hmelo-Silver, “Problem-based learning: What and how do students
learn?” Educational Psychology Review, vol. 16, no. 3, pp. 235–266,
2004.

[16] A. Giordan, “From constructivism to allosteric learning model,” http:
//www.ldes.unige.ch/ang/publi/articles/unesco AG 96/unesco96.htm,
1996, UNESCO Conference on Science Education 2000+.

[17] Carlo Bellettini and Violetta Lonati and Dario Malchiodi and Mattia
Monga and Anna Morpurgo and Mauro Torelli, “What you see is
what you have in mind: constructing mental models for formatted
text processing,” in Proceedings of ISSEP 2013, ser. Commentarii
informaticae didacticae, no. 6. Universitätsverlag Potsdam, 2013, pp.
139–147.

[18] B. Harvey, Computer Science Logo Style, 2nd ed. MIT Press, 1997.
[19] P. D. Palma, “Viewpoint: Why women avoid computer science,” Com-

munications of the ACM, vol. 44, no. 6, pp. 27–30, 2001.
[20] D. Baranovskiy, “Raphaël,” http://dmitrybaranovskiy.github.io/raphael.
[21] H. Kahney, “What do novice programmers know about recursion,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’83. New York, NY, USA: ACM, 1983, pp. 235–239.
[Online]. Available: http://doi.acm.org/10.1145/800045.801618

[22] L. W. Anderson, D. R. Krathwohl, P. W. Airasian, K. A. Cruikshank,
R. E. Mayer, P. R. Pintrich, J. Raths, and M. C. Wittrock, A Taxonomy
for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy
of Educational Objectives, Abridged Edition, 2nd ed. Pearson, Dec.
2000.

[23] V. Dagienė and S. Sentance, “It’s computational thinking! bebras tasks in
the curriculum,” in International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives. Springer, 2016, pp. 28–39.

http://www.mii.lt/informatics_in_education/htm/INFE235.htm
http://www.mii.lt/informatics_in_education/htm/INFE235.htm
http://dx.doi.org/10.2190/AGG9-A5UD-DEK0-80EN
http://doi.acm.org/10.1145/544414.544441
http://doi.acm.org/10.1145/2361276.2361296
http://doi.acm.org/10.1145/209849.209850
https://code.org
http://www.ldes.unige.ch/ang/publi/articles/unesco_AG_96/unesco96.htm
http://www.ldes.unige.ch/ang/publi/articles/unesco_AG_96/unesco96.htm
http://dmitrybaranovskiy.github.io/raphael
http://doi.acm.org/10.1145/800045.801618

	Introduction
	Recursive solutions to computational problems
	Learning goals and methodology
	Description of the activities
	Computing the length of a word with LEGO bricks
	Analysis of a recursive algorithm with a software tool
	Comparison of previous algorithms
	Guided design of a recursive algorithm which computes powers

	Assessment and evaluation
	Reactions and contributions by pupils during the activities
	Analysis of worksheet answers and reports

	Conclusions and further development
	References

